
Serverless applications are everywhere now; and it’s impact on software architecture, development, and

testing is transformative.

What is Serverless
Serverless applications is an interesting name, that really has less to do with the application, and more to

do with the technology hosting and storage of the application. Serverless applications do make use of

servers, it’s just that they use them differently than in the past.

If you consider an application to be a product, activity, or service, you can in turn also think of the server

as the house in which that product, activity, or service is homed. In traditional server systems, that house

is static, probably like your house, or mine.

In the current “Serverless” system, you can have that same product, activity, and service, but the house

can change as the needs grow or shrink- like adding a room when you need more space, or renting that

room out when space is not being used.

Serverless technology has benefits for both the server hub, and the producer of the application.

Applications using serverless architecture only pay for services when actively using those services- as in

executing a process.

Let’s Take a More Technical Look
The most well-known and understood advantage and selling point of serverless computing is that it

economizes the use of cloud resources. Serverless providers only charge for the time that code is

executing, maximizing the function and profitability for both the provider and developer. Interestingly

Serverless has also increased stability due to spinning services/instances as needed and having

redundancy built into the system.

The process of moving to serverless and the numbers of applications and services that have moved to

serverless is a testament to it’s function, and it’s existing economic incentives.

Additional interesting serverless strengths are further costs reduction when multiple applications share

common components, and in defining workflows.

Current thoughts on defining and describing serverless include calling it Event Driven, or Function and a

Service (FaaS) protocol. Serverless architecture is best utilized to process events, or discrete chunks of

data generated as a time series.

Aus
tin

 Sam
ple

 - 1

Exte
rna

l B
log

How it Works
Data arrives at the application, (via human or endpoint), and the architecture incorporates an API

gateway that accepts the data and determines which serverless component receives the data.

Regardless of which host is being used for the applications serverless architecture, the runtime

environment will pass the data is to the component, where it is processed, and returned to the gateway

for further processing by other runtime functions, or returned to the user completed.

1. Application Development.

a. Developers write code, and deploy it to their cloud provider.

2. Cloud Host

a. Application code is hosted by the cloud provider, and homed in a fleet of servers.

3. Application use

a. Requests are made to execute the Application code.

b. The cloud provider creates a new container to run the code in.

c. The container is deleted when the execution has been completed.

Aus
tin

 Sam
ple

 - 1

Exte
rna

l B
log

Considerations
There are challenges and Serverless architecture doesn’t work in all things.

It’s important to keep in mind that serverless systems are not intended to become complete application.

Successful use of serverless requires a separation of data input from computing actions.

Serverless weaknesses can be found in that it doesn’t operate as efficiently or successfully if there are

longer computation times, or when persistence of data is required. There are some work arounds for

this, but they can be problematic. For example, the process takes to long, and serverless will then stop,

and require a cold start- it simply may not work for that longer time period. The fix could be to make lots

of little computations, that when broken apart, are fast enough to work well in a serverless environment;

but the amount of coding time and rebuilding by developers can be prohibitive.

Follow that with a look into testing and quality process, and you have a black box that becomes

challenging if not impossible to fix because all of the different pieces are separate. If you fix one, what

does it mean to the others. The loop for QA on this could reduce or even remove any cost benefit for

being serverless. Programmers and Dev teams will have to add to their workflows, additional steps to

recognize, predict, and plan for faults. Training in understanding of the runtime functions, or

methodologies for external storage of persistent data may be required.

Lacking persistence of data is another area that will inhibit or transform the both development and

testing methodologies. If you do end up with an external method to emulate persistence, is it a security

risk? This is a work around that requires further research.

Serverless may require re-designing an application architecture to separate data input and storage from

data actions. Serverless components tend to do back-end execution, over front end or user interface

operations. Most often there is a separate UI layer or other data input mechanism, that then feeds

triggering data into the serverless end; a separate and distinct input from the serverless architecture.

Serverless is Stateless (Lacks Persistence)

There is one more unique feature of serverless functions – they are stateless. Individual
functions accept input, they process that input in some way, and they output the result. There is
no local or persistent storage, and this is by design. In fact, the entire architecture as originally
conceived has no persistent storage.

Impact of Persistence on Testing and Development

This has several implications for testing. First, it makes it problematic to test more than one
Lambda function at a time. Testers usually rely on maintaining state from one step to the next in
testing a workflow, so that the results of previous operations can be taken into account as input
to subsequent steps in the process. On the other hand, it may also make it more straightforward
to test and validate individual functions independently of one another. But it is a different way of
thinking about unit versus system testing.

The lack of persistent storage also has implications for the application as a whole. In a data
processing application, developers are used to being able to temporarily persist data that may
be needed a few steps farther along. Not having that means that it is possible to test only

Aus
tin

 Sam
ple

 - 1

Exte
rna

l B
log

End Sample 1 - External - Blog Post

Aus
tin

 Sam
ple

 -2

Int
ern

al
Q.S.G

.

Aus
tin

 Sam
ple

 -2

Int
ern

al
Q.S.G

.

Aus
tin

 Sam
ple

 -2

Int
ern

al
Q.S.G

.

End Sample 2 - Internal - Q.S.G.

Sample Internal Learning
Onboarding for Team Member -> Learn the product

Welcome to OurProduct
This scavenger hunt is a fun, hands-on way to explore the platform. It also provides links to additional

content and articles that you may find helpful as you learn about OurCompany, OurProduct and our

customers.

Before You Begin
To complete the scavenger hunt, you must log on to OurProduct. You will need login details for two user

accounts available for this exercise.

• Your personal login information for your OurProduct account, which is an admin user role

• A student account for John Wayne, using the login details below.

Login Details
• Your personal OurProduct login as yourname@OurProduct.com, using the password provided

• Student login for username john.wayne and password john.wayne

NOTE: If you do not know your personal login details, check with your team lead or look in your

designated password software, such as LastPass.

Begin the Hunt | Junior Role

1) Log on to https://www.ourproduct.com as user john.wayne with password john.wane (using the

SuperDuper license)

2) Select My SuperTasks from the main menu bar. The Welcom to My Tasks page displays.

3) Begin these assignments:

a. Your Interests (Nia)

Complete all components of this taks.

b. The Awesome Sauce (Nia)

c. Building things (Nia)

4) Find Topics and complete these tasks:

a. Watch 8-10 topic videos. As you visit, be sure to save at least 3 favorites.

b. Choose your favorite Topic, and revisit to complete the following:

Note: This scavenger hunt includes several activities to familiarize you with OurProduct. As you

complete these activities in our live environment, keep in mind that your usage, assessment results,

and completed tasks will be visible to customers and those for whom you do demos.

Hint: We have purposely left some navigation cues out of these instructions so that you can

experiment and familiarize yourself with the platform. Happy Hunting. Aus
tin

 Sam
ple

 - 3

Int
ern

al
Le

arn
ing

i. Add the topic to My Playlist

ii. Complete a Suprise Survey

iii. Find three Sources and save them as favorites.

iv. Find three Exercises and save them as favorites.

HINT: You may have to adjust search filters to return results

5) Find My Sources to view your topic selections. The three you favorited should show up.

6) Find My Exercises to see your selections. The three you favorited should show up.

7) Find Tools and complete these tasks:

a. Complete 5 reviews

b. Complete a Post Task Plan and Save

Great start! Now, take a look at the Admin view of OurProduct.

Begin the Hunt | Admin Role
1) Log on to https://www.ourproduct.com/login/testing/admins/ using your personal admin login.

2) Determine how to navigate to SuperTasks.

a. Hint

3) Find your Tasks. There should be “x” for John Wayne (john.wayne).

a. Notice that you can see what John Wayne’s activities completion status.

b. Give feedback selection on all three tasks

4) Create a new SuperTask, and ask the assigned user(s) to visit the SuperSurfer profile.

5) Fine Reports and complete these tasks.

a. Run a report for user Christopher Robin – what were his top three interests?

b. Run a report that tells you who spent the most time on OurProduct this year.

c. Run a report to determine the name of Christopher Robin’s previous activities.

d. Find these details for user Marvin Martian.

i. Has Marvin accomplished the surprise survey?

e. Find these details for John Wayne

Aus
tin

 Sam
ple

 - 3

Int
ern

al
Le

arn
ing

End Sample 3 - Internal - Learning

Sample Test Ticket
The following is an example of a test ticket. In addition to the Conditions of Satisfaction, I have included

commands within the descriptions that would normally be found on a resources page in a wiki.

Test Ticket Sample

Conditions of Satisfaction –
Dev-XXXX developed a new carousel that should scroll left to right. Items inside carousel should have

links. Actions taken with carousel are trackable using our dashboard on elastic

CoS =

Confirm second carousel on landing page has left/right scrolling behavior

Confirm links

Confirm analytics from elasticsearch – login as dev@ourdomain.com PW: SuperElastic

Data being gathered is time on page, scrolling behavior

1) Arrows

2) Swipe

Clicking behavior – should include ID

The following test ticket is an example of both initial grooming, and discussion with QC team on what the

CoS mean.

Ticket Test-XXXX

Dev-NNNN @theDeveloperHere

Test-XXXX @theTesterHere

Environment https://Dev-XXXX.ourproduct.com

Device

OS

Aus
tin

 Sam
ple

 - 4

Tes
t T

ick
et

mailto:dev@ourdomain.com

Testing: Ticket XXXX
Domain: OurProduct.TestingServerXXX.com

User: TestUser1 PW:TestUser1

Setup :
Open MySQL Server Studio -> open to navigation table

CMD -> SSH into test-XXXX.ourproduct.testingserver

Will be running the elestac-collect Set of

commands found on Testing Resources Page

SSH Table

Browser 1) Open elestisearch dev environment: test-XXXX.elastisearch.ourproduct.com

Browser 2) Touch screen enabled device: test server https://dev-XXXX.ourproduct.com

Test:
1) Navigate to https://dev-XXXX.ourproduct.com as external user

a. Scroll down to second carousel

b. Using arrows move 2 cells to the right

c. Using arrows move 1 cell to the left

2) CMD: Run SSH command

a. ssh php elestac-collect

b. ssh php elestac update

3) Navigate in another browser to test-XXXX.elastisearch.ourproduct.com -> Reports

a. Check – does the data in elestisearch include the right/left navigation? Yes = pass

b. Does the elestisearch data include use of arrows? Yes = pass

4) Return to carousel as user

a. Scroll using swipe of finger – note number of cells here.

b. Select one

i. Do you navigate to option

5) From SSH – confirm data in Elestisearch

6) MySQL Server Studio -> does data include id

SSH directions found on Testing Resources Page

1. ssh ubuntu@dev-XXXX.ourproduct.com

2. cd ourproduct.com/specialsauce.ourproduct.com/

3. Elestac-collect commands

a. Php elestac-collect

b. php cli.php kpi-update

SQL queries found on Testing Resources Page

Example:

Select top 30 * from kpi_tracking order by created_at desc

Aus
tin

 Sam
ple

 - 4

Tes
t T

ick
et

End Sample 4 - Internal - Test Ticket

https://dev-xxxx.ourproduct.com/

	Sample 1 - External Blog Post
	Sample 2 - Internal - QSG
	Sample 3 - Internal - Learning / Onboarding
	Sample 4 - Internal - Test Ticket

